Displaying 41 – 60 of 173

Showing per page

Espaces homogènes principaux, unités elliptiques et fonctions L

Philippe Cassou-Noguès, Martin J. Taylor (1994)

Annales de l'institut Fourier

Nous étudions la structure de certains espaces homogènes principaux associés aux éléments du groupe de Selmer d’une courbe elliptique à multiplication complexe. Nous utilisons des résultats de Rubin pour construire, à partir des unités elliptiques, des espaces homogènes principaux de structure galoisienne non triviale. Cette construction fournit un lien nouveau entre un problème de structure galoisienne et certaines fonctions L - p -adiques.

Factorisability and wildly ramified Galois extensions

David J. Burns (1991)

Annales de l'institut Fourier

Let L / K be an abelian extension of p -adic fields, and let 𝒪 denote the valuation ring of K . We study ideals of the valuation ring of L as integral representations of the Galois group Gal ( L / K ) . Assuming K is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an 𝒪 -order in the group algebra K [ Gal ( l / K ) ] . We obtain several general and also explicit new results.

Galois module structure of the rings of integers in wildly ramified extensions

Stephen M. J. Wilson (1989)

Annales de l'institut Fourier

The main results of this paper may be loosely stated as follows.Theorem.— Let N and N ' be sums of Galois algebras with group Γ over algebraic number fields. Suppose that N and N ' have the same dimension and that they are identical at their wildly ramified primes. Then (writing 𝒪 N for the maximal order in N ) 𝒪 N 𝒪 N Γ Γ 𝒪 N ' 𝒪 N ' Γ . In many cases 𝒪 N Γ 𝒪 N ' . The role played by the root numbers of N and N ' at the symplectic characters of Γ in determining the relationship between the Γ -modules 𝒪 N and 𝒪 N ' is described. The theorem includes...

Hilbert-Speiser number fields and Stickelberger ideals

Humio Ichimura (2009)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime number. We say that a number field F satisfies the condition ( H p n ) when any abelian extension N / F of exponent dividing p n has a normal integral basis with respect to the ring of p -integers. We also say that F satisfies ( H p ) when it satisfies ( H p n ) for all n 1 . It is known that the rationals satisfy ( H p ) for all prime numbers p . In this paper, we give a simple condition for a number field F to satisfy ( H p n ) in terms of the ideal class group of K = F ( ζ p n ) and a “Stickelberger ideal” associated to the Galois group...

Hopf-Galois module structure of tame biquadratic extensions

Paul J. Truman (2012)

Journal de Théorie des Nombres de Bordeaux

In [14] we studied the nonclassical Hopf-Galois module structure of rings of algebraic integers in some tamely ramified extensions of local and global fields, and proved a partial generalisation of Noether’s theorem to this setting. In this paper we consider tame Galois extensions of number fields L / K with group G C 2 × C 2 and study in detail the local and global structure of the ring of integers 𝔒 L as a module over its associated order 𝔄 H in each of the Hopf algebras H giving a nonclassical Hopf-Galois structure...

Currently displaying 41 – 60 of 173