Previous Page 5

Displaying 81 – 100 of 100

Showing per page

The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields

Hourong Qin (1995)

Acta Arithmetica

1. Introduction. Let F be a number field and O F the ring of its integers. Many results are known about the group K O F , the tame kernel of F. In particular, many authors have investigated the 2-Sylow subgroup of K O F . As compared with real quadratic fields, the 2-Sylow subgroups of K O F for imaginary quadratic fields F are more difficult to deal with. The objective of this paper is to prove a few theorems on the structure of the 2-Sylow subgroups of K O F for imaginary quadratic fields F. In our Ph.D. thesis (see...

The Sylow p-Subgroups of Tame Kernels in Dihedral Extensions of Number Fields

Qianqian Cui, Haiyan Zhou (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F/E be a Galois extension of number fields with Galois group D 2 . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group D 16 .

Théorèmes de réflexion

Georges Gras (1998)

Journal de théorie des nombres de Bordeaux

Soit K un corps de nombres contenant μ p et muni d’un groupe d’automorphismes G d’ordre étranger à p ; pour toute représentation 𝔽 p -irréductible V χ de G , de caractère χ , et tout G -module M , soit rg χ ( M ) l’entier r maximum tel que M / M p contienne V χ r . Nous établissons par exemple la formule générale explicite suivante : r g χ * ( C T S ) - r g χ ( C S T ) = ρ χ ( T , S ) , T et S sont des ensembles finis disjoints de places de K tels que T S contienne les places au-dessus de p , où C T S est le groupe de classes généralisées qui correspond, par le corps de classes, au...

Trivialité du 2 -rang du noyau hilbertien

Hervé Thomas (1994)

Journal de théorie des nombres de Bordeaux

We give exhaustive list of biquadratic fields K = ( i , m ) and K = ( 2 , m ) without 2 -exotic symbol, i.e. for which the 2 -rank of the Hilbert kernel (or wild kernel) is zero. Such K = ( i , m ) are logarithmic principals [J3]. We detail an exemple of this technical numerical exploration and quote the family of theories and results we utilize. The 2 -rank of tame, regular and wild kernel of K -theory are connected with local and global problem of embedding in a Z 2 -extension. Global class field theory can describe the 2 -rank of the Hilbert...

Currently displaying 81 – 100 of 100

Previous Page 5