Tame kernels of cyclic extensions of number fields
Previous Page 5
Haiyan Zhou (2009)
Acta Arithmetica
Xia Wu (2008)
Acta Arithmetica
Hourong Qin (1995)
Acta Arithmetica
1. Introduction. Let F be a number field and the ring of its integers. Many results are known about the group , the tame kernel of F. In particular, many authors have investigated the 2-Sylow subgroup of . As compared with real quadratic fields, the 2-Sylow subgroups of for imaginary quadratic fields F are more difficult to deal with. The objective of this paper is to prove a few theorems on the structure of the 2-Sylow subgroups of for imaginary quadratic fields F. In our Ph.D. thesis (see...
Xuejun Guo (2007)
Acta Arithmetica
Hourong Qin (1995)
Acta Arithmetica
Qin Yue, Keqin Feng (2000)
Acta Arithmetica
Xuejun Guo, Hourong Qin (2012)
Acta Arithmetica
Don Zagier (1990)
Mathematische Annalen
Jerzy Browkin (1982)
Banach Center Publications
Sumida-Takahashi, Hiroki (2005)
Experimental Mathematics
Manfred Kolster (1986)
Commentarii mathematici Helvetici
Xiaobin Yin, Hourong Qin, Qunsheng Zhu (2005)
Acta Arithmetica
H. R. Qin (2004)
Acta Arithmetica
Qianqian Cui, Haiyan Zhou (2013)
Bulletin of the Polish Academy of Sciences. Mathematics
Let F/E be a Galois extension of number fields with Galois group . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group .
Georges Gras (1998)
Journal de théorie des nombres de Bordeaux
Soit un corps de nombres contenant et muni d’un groupe d’automorphismes d’ordre étranger à ; pour toute représentation -irréductible de , de caractère , et tout -module , soit rg l’entier maximum tel que contienne . Nous établissons par exemple la formule générale explicite suivante :où et sont des ensembles finis disjoints de places de tels que contienne les places au-dessus de , où est le groupe de classes généralisées qui correspond, par le corps de classes, au...
D.R. Estes, J. Hurrelbrink, R. Perlis (1985)
Commentarii mathematici Helvetici
I. Madsen, S. Bentzen (1990)
Journal für die reine und angewandte Mathematik
Hervé Thomas (1994)
Journal de théorie des nombres de Bordeaux
We give exhaustive list of biquadratic fields and without -exotic symbol, i.e. for which the -rank of the Hilbert kernel (or wild kernel) is zero. Such are logarithmic principals [J3]. We detail an exemple of this technical numerical exploration and quote the family of theories and results we utilize. The -rank of tame, regular and wild kernel of -theory are connected with local and global problem of embedding in a -extension. Global class field theory can describe the -rank of the Hilbert...
Paul Arne Østvær (2004)
Acta Arithmetica
Rob de Jeu (1995)
Compositio Mathematica
Previous Page 5