Displaying 221 – 240 of 3416

Showing per page

Algebraic Numbers

Yasushige Watase (2016)

Formalized Mathematics

This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial...

Algebraic properties of a family of Jacobi polynomials

John Cullinan, Farshid Hajir, Elizabeth Sell (2009)

Journal de Théorie des Nombres de Bordeaux

The one-parameter family of polynomials J n ( x , y ) = j = 0 n y + j j x j is a subfamily of the two-parameter family of Jacobi polynomials. We prove that for each n 6 , the polynomial J n ( x , y 0 ) is irreducible over for all but finitely many y 0 . If n is odd, then with the exception of a finite set of y 0 , the Galois group of J n ( x , y 0 ) is S n ; if n is even, then the exceptional set is thin.

Algebraic S-integers of fixed degree and bounded height

Fabrizio Barroero (2015)

Acta Arithmetica

Let k be a number field and S a finite set of places of k containing the archimedean ones. We count the number of algebraic points of bounded height whose coordinates lie in the ring of S-integers of k. Moreover, we give an asymptotic formula for the number of S̅-integers of bounded height and fixed degree over k, where S̅ is the set of places of k̅ lying above the ones in S.

Algèbres simples centrales sur les corps de fonctions de deux variables

Jean-Louis Colliot-Thélène (2004/2005)

Séminaire Bourbaki

À toute classe dans le groupe de Brauer d’un corps F sont associés deux entiers, l’indice (degré d’un corps gauche représentant la classe) et l’exposant (ordre de la classe dans le groupe de Brauer). L’exposant divise l’indice, mais ne lui est pas nécessairement égal. Lorsque F est un corps de nombres, c’est un théorème des années 1930 qu’exposant et indice coïncident. A. J. de Jong (Duke Math. J. 123 (2004) 71-94) a montré récemment qu’ils coïncident aussi lorsque F est un corps de fonctions de...

Currently displaying 221 – 240 of 3416