Displaying 221 – 240 of 563

Showing per page

On power integral bases for certain pure number fields defined by x 18 - m

Lhoussain El Fadil (2022)

Commentationes Mathematicae Universitatis Carolinae

Let K = ( α ) be a number field generated by a complex root α of a monic irreducible polynomial f ( x ) = x 18 - m , m 1 , is a square free rational integer. We prove that if m 2 or 3 ( mod 4 ) and m ¬ 1 ( mod 9 ) , then the number field K is monogenic. If m 1 ( mod 4 ) or m 1 ( mod 9 ) , then the number field K is not monogenic.

On q-orders in primitive modular groups

Jacek Pomykała (2014)

Acta Arithmetica

We prove an upper bound for the number of primes p ≤ x in an arithmetic progression 1 (mod Q) that are exceptional in the sense that * p has no generator in the interval [1,B]. As a consequence we prove that if Q > e x p [ c ( l o g p ) / ( l o g B ) ( l o g l o g p ) ] with a sufficiently large absolute constant c, then there exists a prime q dividing Q such that ν q ( o r d p b ) = ν q ( p - 1 ) for some positive integer b ≤ B. Moreover we estimate the number of such q’s under suitable conditions.

On relative integral bases for unramified extensions

Kevin Hutchinson (1995)

Acta Arithmetica

0. Introduction. Since ℤ is a principal ideal domain, every finitely generated torsion-free ℤ-module has a finite ℤ-basis; in particular, any fractional ideal in a number field has an "integral basis". However, if K is an arbitrary number field the ring of integers, A, of K is a Dedekind domain but not necessarily a principal ideal domain. If L/K is a finite extension of number fields, then the fractional ideals of L are finitely generated and torsion-free (or, equivalently, finitely generated and...

Currently displaying 221 – 240 of 563