Displaying 281 – 300 of 563

Showing per page

On the arithmetic of cross-ratios and generalised Mertens’ formulas

Jouni Parkkonen, Frédéric Paulin (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

We develop the relation between hyperbolic geometry and arithmetic equidistribution problems that arises from the action of arithmetic groups on real hyperbolic spaces, especially in dimension 5 . We prove generalisations of Mertens’ formula for quadratic imaginary number fields and definite quaternion algebras over , counting results of quadratic irrationals with respect to two different natural complexities, and counting results of representations of (algebraic) integers by binary quadratic, Hermitian...

On the asymptotic behavior of some counting functions

Maciej Radziejewski, Wolfgang A. Schmid (2005)

Colloquium Mathematicae

The investigation of certain counting functions of elements with given factorization properties in the ring of integers of an algebraic number field gives rise to combinatorial problems in the class group. In this paper a constant arising from the investigation of the number of algebraic integers with factorizations of at most k different lengths is investigated. It is shown that this constant is positive if k is greater than 1 and that it is also positive if k equals 1 and the class group satisfies...

On the asymptotic behavior of some counting functions, II

Wolfgang A. Schmid (2005)

Colloquium Mathematicae

The investigation of the counting function of the set of integral elements, in an algebraic number field, with factorizations of at most k different lengths gives rise to a combinatorial constant depending only on the class group of the number field and the integer k. In this paper the value of these constants, in case the class group is an elementary p-group, is estimated, and determined under additional conditions. In particular, it is proved that for elementary 2-groups these constants are equivalent...

Currently displaying 281 – 300 of 563