The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 261 –
280 of
569
We consider two issues concerning polynomial cycles. Namely, for a discrete valuation domain of positive characteristic (for ) or for any Dedekind domain of positive characteristic (but only for ), we give a closed formula for a set of all possible cycle-lengths for polynomial mappings in . Then we give a new property of sets , which refutes a kind of conjecture posed by W. Narkiewicz.
Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition , where is the second Hilbert 2-class field of k.
We study a certain finitely generated multiplicative subgroup of the Hilbert class field of a quartic CM field. It consists of special values of certain theta functions of genus 2 and is analogous to the group of Siegel units. Questions of integrality of these specials values are related to the arithmetic of the Siegel moduli space.
We extend the notions of quasi-monomial groups and almost monomial groups in the framework of supercharacter theories, and we study their connection with Artin’s conjecture regarding the holomorphy of Artin -functions.
We study Tate’s refinement for a conjecture of Gross on the values of abelian -function at and formulate its generalization to arbitrary cyclic extensions. We prove that our generalized conjecture is true in the case of number fields. This in particular implies that Tate’s refinement is true for any number field.
Let be an odd square-free integer, any integer and . In this paper, we shall determine all the fields having an odd class number. Furthermore, using the cyclotomic -extensions of some number fields, we compute the rank of the -class group of whenever the prime divisors of are congruent to or .
1. Introduction. For quadratic fields whose discriminant has few prime divisors, there are explicit formulas for the 4-rank of . For quadratic fields whose discriminant has arbitrarily many prime divisors, the formulas are less explicit. In this paper we will study fields of the form , where the primes are all congruent to 1 mod 8. We will prove a theorem conjectured by Conner and Hurrelbrink which examines under what conditions the 4-rank of is zero for such fields. In the course of proving...
Currently displaying 261 –
280 of
569