On the trace map between absolutely abelian number fields of equal conductor
Let K, L be algebraic number fields with K ⊆ L, and , their respective rings of integers. We consider the trace map and the -ideal . By I(L/K) we denote the group indexof in (i.e., the norm of over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of (Theorem 1). The case...
Lately, explicit upper bounds on (for primitive Dirichlet characters ) taking into account the behaviors of on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other...
1. Introduction. Let p be a prime number and the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, a -extension of k, the nth layer of , and the p-Sylow subgroup of the ideal class group of . Iwasawa proved the following well-known theorem about the order of : Theorem A (Iwasawa). Let be a -extension and the p-Sylow subgroup of the ideal class group of , where is the th layer of . Then there exist integers , , , and n₀ ≥ 0 such that for...
We compute the numbers of locally principal ideals with given norm in a class of definite quaternion orders and the traces of the Brandt-Eichler matrices corresponding to these orders. As an application, we compute the numbers of representations of algebraic integers by the norm forms of definite quaternion orders with class number one as well as we obtain class number relations for some CM-fields.