Displaying 501 – 520 of 563

Showing per page

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Mathematica Bohemica

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove that each...

On the structure of the 2-Iwasawa module of some number fields of degree 16

Idriss Jerrari, Abdelmalek Azizi (2022)

Czechoslovak Mathematical Journal

Let K be an imaginary cyclic quartic number field whose 2-class group is of type ( 2 , 2 , 2 ) , i.e., isomorphic to / 2 × / 2 × / 2 . The aim of this paper is to determine the structure of the Iwasawa module of the genus field K ( * ) of K .

On the structure of the Galois group of the Abelian closure of a number field

Georges Gras (2014)

Journal de Théorie des Nombres de Bordeaux

From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields K having isomorphic absolute Abelian Galois groups A K , we study any such issue for arbitrary number fields K . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p -adic obstructions coming from the global units of K . By restriction to the p -Sylow subgroups of A K and assuming the Leopoldt conjecture we show that the...

On the subfields of cyclotomic function fields

Zhengjun Zhao, Xia Wu (2013)

Czechoslovak Mathematical Journal

Let K = 𝔽 q ( T ) be the rational function field over a finite field of q elements. For any polynomial f ( T ) 𝔽 q [ T ] with positive degree, denote by Λ f the torsion points of the Carlitz module for the polynomial ring 𝔽 q [ T ] . In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield M of the cyclotomic function field K ( Λ P ) of degree k over 𝔽 q ( T ) , where P 𝔽 q [ T ] is an irreducible polynomial of positive degree and k > 1 is a positive divisor of q - 1 . A formula for the analytic class number for the...

Currently displaying 501 – 520 of 563