The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 501 – 520 of 569

Showing per page

On the S-Euclidean minimum of an ideal class

Kevin J. McGown (2015)

Acta Arithmetica

We show that the S-Euclidean minimum of an ideal class is a rational number, generalizing a result of Cerri. In the proof, we actually obtain a slight refinement of this and give some corollaries which explain the relationship of our results with Lenstra's notion of a norm-Euclidean ideal class and the conjecture of Barnes and Swinnerton-Dyer on quadratic forms. In particular, we resolve a conjecture of Lenstra except when the S-units have rank one. The proof is self-contained but uses ideas from...

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Mathematica Bohemica

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove that each...

On the structure of the 2-Iwasawa module of some number fields of degree 16

Idriss Jerrari, Abdelmalek Azizi (2022)

Czechoslovak Mathematical Journal

Let K be an imaginary cyclic quartic number field whose 2-class group is of type ( 2 , 2 , 2 ) , i.e., isomorphic to / 2 × / 2 × / 2 . The aim of this paper is to determine the structure of the Iwasawa module of the genus field K ( * ) of K .

On the structure of the Galois group of the Abelian closure of a number field

Georges Gras (2014)

Journal de Théorie des Nombres de Bordeaux

From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields K having isomorphic absolute Abelian Galois groups A K , we study any such issue for arbitrary number fields K . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p -adic obstructions coming from the global units of K . By restriction to the p -Sylow subgroups of A K and assuming the Leopoldt conjecture we show that the...

On the subfields of cyclotomic function fields

Zhengjun Zhao, Xia Wu (2013)

Czechoslovak Mathematical Journal

Let K = 𝔽 q ( T ) be the rational function field over a finite field of q elements. For any polynomial f ( T ) 𝔽 q [ T ] with positive degree, denote by Λ f the torsion points of the Carlitz module for the polynomial ring 𝔽 q [ T ] . In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield M of the cyclotomic function field K ( Λ P ) of degree k over 𝔽 q ( T ) , where P 𝔽 q [ T ] is an irreducible polynomial of positive degree and k > 1 is a positive divisor of q - 1 . A formula for the analytic class number for the...

Currently displaying 501 – 520 of 569