On the singular Drinfeld modules of rank 2.
We study the capitulation of -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields , where and are different primes. For each of the three quadratic extensions inside the absolute genus field of , we determine a fundamental system of units and then compute the capitulation kernel of . The generators of the groups and are also determined from which we deduce that is smaller than the relative genus field . Then we prove that each...
Let be an imaginary cyclic quartic number field whose 2-class group is of type , i.e., isomorphic to . The aim of this paper is to determine the structure of the Iwasawa module of the genus field of .
From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields having isomorphic absolute Abelian Galois groups , we study any such issue for arbitrary number fields . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some -adic obstructions coming from the global units of . By restriction to the -Sylow subgroups of and assuming the Leopoldt conjecture we show that the...
Let be the rational function field over a finite field of elements. For any polynomial with positive degree, denote by the torsion points of the Carlitz module for the polynomial ring . In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield of the cyclotomic function field of degree over , where is an irreducible polynomial of positive degree and is a positive divisor of . A formula for the analytic class number for the...