Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten
Soient une extension quadratique imaginaire de et son anneau des entiers. Lorsque 3 est décomposé dans , nous démontrons que les anneaux d’entiers de certains corps de classe de rayon de sont monogènes sur l’anneau des entiers du corps de classes de rayon 3. Des générateurs de “monogénéite” sont obtenus a l’aide de fonctions elliptiques qui paramétrisent un modèle de Deuring de la courbe elliptique associée au réseau .
We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.
Granville and Soundararajan have recently suggested that a general study of multiplicative functions could form the basis of analytic number theory without zeros of L-functions; this is the so-called pretentious view of analytic number theory. Here we study multiplicative functions which arise from the arithmetic of number fields. For each finite Galois extension K/ℚ, we construct a natural class of completely multiplicative functions whose values are dictated by Artin symbols, and we show that...