On algebraic number fields with even class numbers.
What should be assumed about the integral polynomials in order that the solvability of the congruence for sufficiently large primes p implies the solvability of the equation in integers x? We provide some explicit characterizations for the cases when are binomials or have cyclic splitting fields.
Let be a complex number, be a positive rational integer and , where denotes the set of polynomials with rational integer coefficients of absolute value . We determine in this note the maximum of the quantities when runs through the interval . We also show that if is a non-real number of modulus , then is a complex Pisot number if and only if for all .
We deal with the construction of sequences of irreducible polynomials with coefficients in finite fields of even characteristic. We rely upon a transformation used by Kyuregyan in 2002, which generalizes the -transform employed previously by Varshamov and Garakov (1969) as well as by Meyn (1990) for the synthesis of irreducible polynomials. While in the iterative procedure described by Kyuregyan the coefficients of the initial polynomial of the sequence have to satisfy certain hypotheses, in the...
It is well known that duality theorems are of utmost importance for the arithmetic of local and global fields and that Brauer groups appear in this context unavoidably. The key word here is class field theory.In this paper we want to make evident that these topics play an important role in public key cryptopgraphy, too. Here the key words are Discrete Logarithm systems with bilinear structures.Almost all public key crypto systems used today based on discrete logarithms use the ideal class groups...