Displaying 81 – 100 of 563

Showing per page

On classical weight one forms in Hida families

Mladen Dimitrov, Eknath Ghate (2012)

Journal de Théorie des Nombres de Bordeaux

We give precise estimates for the number of classical weight one specializations of a non-CM family of ordinary cuspidal eigenforms. We also provide examples to show how uniqueness fails with respect to membership of weight one forms in families.

On classifying Laguerre polynomials which have Galois group the alternating group

Pradipto Banerjee, Michael Filaseta, Carrie E. Finch, J. Russell Leidy (2013)

Journal de Théorie des Nombres de Bordeaux

We show that the discriminant of the generalized Laguerre polynomial L n ( α ) ( x ) is a non-zero square for some integer pair ( n , α ) , with n 1 , if and only if ( n , α ) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n ( α ) ( x ) over is the alternating group A n . For example, we establish that for all but finitely many positive integers n 2 ( mod 4 ) , the only α for which the Galois group of L n ( α ) ( x ) over is A n is α = n .

On coefficient valuations of Eisenstein polynomials

Matthias Künzer, Eduard Wirsing (2005)

Journal de Théorie des Nombres de Bordeaux

Let p 3 be a prime, let n > m 1 . Let π n be the norm of ζ p n - 1 under C p - 1 , so that ( p ) [ π n ] | ( p ) is a purely ramified extension of discrete valuation rings of degree p n - 1 . The minimal polynomial of π n over ( π m ) is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at π m . The function field analogue, as introduced by Carlitz and Hayes, is studied as well.

On computing subfields. A detailed description of the algorithm

Jürgen Klüners (1998)

Journal de théorie des nombres de Bordeaux

Let ( α ) be an algebraic number field given by the minimal polynomial f of α . We want to determine all subfields ( β ) ( α ) of given degree. It is convenient to describe each subfield by a pair ( g , h ) [ t ] × [ t ] such that g is the minimal polynomial of β = h ( α ) . There is a bijection between the block systems of the Galois group of f and the subfields of ( α ) . These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding...

On congruent primes and class numbers of imaginary quadratic fields

Nils Bruin, Brett Hemenway (2013)

Acta Arithmetica

We consider the problem of determining whether a given prime p is a congruent number. We present an easily computed criterion that allows us to conclude that certain primes for which congruency was previously undecided, are in fact not congruent. As a result, we get additional information on the possible sizes of Tate-Shafarevich groups of the associated elliptic curves. We also present a related criterion for primes p such that 16 divides the class number of the imaginary quadratic field ℚ(√-p)....

Currently displaying 81 – 100 of 563