Relations between K2 and Galois Cohomology.
Damey et Payan ont montré que la différence des 4-rangs des groupes des classes d’idéaux des corps quadratiques et est majorée par ( étant positif) :Dans ce papier, l’auteur généralise cette propriété en remplaçant le corps de base par un corps de nombres quelconque. La méthode employée est issue du “Spiegelungssatz” de Leopoldt.
We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.
A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of . We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K.
Let be an extension of algebraic number fields, where is abelian over . In this paper we give an explicit description of the associated order of this extension when is a cyclotomic field, and prove that , the ring of integers of , is then isomorphic to . This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that is the maximal order if is a cyclic and totally wildly ramified extension which is linearly disjoint to , where is the conductor of .