Displaying 81 – 100 of 127

Showing per page

Remarks on normal bases

Marcin Mazur (2001)

Colloquium Mathematicae

We prove that any Galois extension of a commutative ring with a normal basis and abelian Galois group of odd order has a self-dual normal basis. We apply this result to get a very simple proof of nonexistence of normal bases for certain extensions which are of interest in number theory.

Remarks on Weil’s quadratic functional in the theory of prime numbers, I

Enrico Bombieri (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Memoir studies Weil’s well-known Explicit Formula in the theory of prime numbers and its associated quadratic functional, which is positive semidefinite if and only if the Riemann Hypothesis is true. We prove that this quadratic functional attains its minimum in the unit ball of the L 2 -space of functions with support in a given interval - t , t , and prove again Yoshida’s theorem that it is positive definite if t is sufficiently small. The Fourier transform of the functional gives rise to a quadratic...

Remarques sur les différentielles des polylogarithmes uniformes

Jean-Louis Cathelineau (1996)

Annales de l'institut Fourier

On étudie des équations fonctionnelles pour les différentielles des polylogarithmes uniformes. Un des ingrédients est l’analogue infinitésimal d’un complexe introduit par Goncharov. On obtient en particulier une équation fonctionnelle à 22 termes pour la différentielle du trilogarithme.

Representation fields for commutative orders

Luis Arenas-Carmona (2012)

Annales de l’institut Fourier

A representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders containing a copy of . Not every non-maximal order has a representation field. In this work we prove that every commutative order has a representation field and give a formula for it. The main result is proved for central simple algebras over arbitrary global fields.

Currently displaying 81 – 100 of 127