Loading [MathJax]/extensions/MathZoom.js
Let be a -adic local field with residue field such that and be a -adic representation of . Then, by using the theory of -adic differential modules, we show that is a Hodge-Tate (resp. de Rham) representation of if and only if is a Hodge-Tate (resp. de Rham) representation of where is a certain -adic local field with residue field the smallest perfect field containing .
Let be a finite extension of . The field of norms of a -adic Lie extension is a local field of characteristic which comes equipped with an action of . When can we lift this action to characteristic , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of -modules, and give a condition for the existence of certain types of lifts.
Soit un corps -adique, son groupe de Galois absolu et la valuation sur . Dans sa démonstration du théorème d’Ax-Sen-Tate, Ax montre que si pour un , vérifie pour tout , alors il existe tel que , avec . Ax se pose la question de l’optimalité de la constante , que nous étudions ici. En utilisant l’extension de engendrée par les racines -es d’une uniformisante fixée de , nous déterminons la constante optimale, ainsi que des informations supplémentaires sur les tels que pour...
On donne des propriétés de la catégorie tannakienne des modules de Dieudonné filtrés sur un corps -adique (ces modules de Dieudonné jouent en -adique un rôle analogue aux structures de Hodge complexes). On prouve l’existence d’un foncteur fibre sur et la simple connexité du groupe associé. Ceci permet de montrer, sous la conjecture de Fontaine : “faiblement admissible entraîne admissible”, une conjecture de Rapoport et Zink décrivant le torseur entre cohomologie cristalline et étale, et de prouver...
Soit un corps de valuation discrète complet de caractéristique , dont le corps résiduel est de caractéristique . On suppose que admet une -base finie. Soient une clôture algébrique de et . On construit et étudie des anneaux de périodes -adiques qui généralisent ceux définis par J.-M. Fontaine dans le cas où le corps résiduel est parfait. Ces anneaux sont munis des structures supplémentaires habituelles ainsi que d’une connexion. Ils permettent d’étendre les notions de représentation...
On calcule le module des normes universelles pour une représentation -adique de de Rham. Le calcul utilise la théorie des -modules (la formule de réciprocité de Cherbonnier-Colmez) et l’équation différentielle associée à une représentation de de Rham.
We recall some basic constructions from -adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of -pairs, introduced recently by Berger, which provides a natural enlargement of the category of -adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate...
Currently displaying 21 –
40 of
52