Extensions infinies identiquement ramifiées.
Soient un nombre premier et un corps -adique à corps résiduel parfait (par exemple une extension finie de ) dont l’indice de ramification absolue est noté . Afin d’étudier les « représentations semi-stables de -torsion » de , Breuil a défini pour tout entier positif plusieurs catégories de -modules filtrés de torsion. Dans cet article, nous décrivons la structure de ces catégories dans le cas général (seul le cas avait été étudié de façon systématique jusqu’à présent).
Let be an abelian extension of -adic fields, and let denote the valuation ring of . We study ideals of the valuation ring of as integral representations of the Galois group . Assuming is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an -order in the group algebra . We obtain several general and also explicit new results.
We continue the examination of the stable reduction and fields of moduli of -Galois covers of the projective line over a complete discrete valuation field of mixed characteristic , where has a cyclic-Sylow subgroup of order . Suppose further that the normalizer of acts on via an involution. Under mild assumptions, if is a three-point -Galois cover defined over , then the th higher ramification groups above for the upper numbering of the (Galois closure of the) extension vanish,...