Displaying 241 – 260 of 973

Showing per page

F p -représentations semi-stables

Xavier Caruso (2011)

Annales de l’institut Fourier

Soient p un nombre premier et K un corps p -adique à corps résiduel parfait (par exemple une extension finie de F p ) dont l’indice de ramification absolue est noté e . Afin d’étudier les « représentations semi-stables de p -torsion » de G K = Gal ( K ¯ / K ) , Breuil a défini pour tout entier positif r < p - 1 plusieurs catégories de ( φ , N ) -modules filtrés de torsion. Dans cet article, nous décrivons la structure de ces catégories dans le cas général (seul le cas e r < p - 1 avait été étudié de façon systématique jusqu’à présent).

Factorisability and wildly ramified Galois extensions

David J. Burns (1991)

Annales de l'institut Fourier

Let L / K be an abelian extension of p -adic fields, and let 𝒪 denote the valuation ring of K . We study ideals of the valuation ring of L as integral representations of the Galois group Gal ( L / K ) . Assuming K is absolutely unramified we use techniques from the theory of factorisability to investigate which ideals are isomorphic to an 𝒪 -order in the group algebra K [ Gal ( l / K ) ] . We obtain several general and also explicit new results.

Fields of moduli of three-point G -covers with cyclic p -Sylow, II

Andrew Obus (2013)

Journal de Théorie des Nombres de Bordeaux

We continue the examination of the stable reduction and fields of moduli of G -Galois covers of the projective line over a complete discrete valuation field of mixed characteristic ( 0 , p ) , where G has a cyclic p -Sylow subgroup P of order p n . Suppose further that the normalizer of P acts on P via an involution. Under mild assumptions, if f : Y 1 is a three-point G -Galois cover defined over ¯ , then the n th higher ramification groups above p for the upper numbering of the (Galois closure of the) extension K / vanish,...

Currently displaying 241 – 260 of 973