On the Behaviour of p-Adic L-Functions at s= 0.
Let be an odd prime, an odd, -adic Dirichlet character and the cyclic imaginary extension of associated to . We define a “-part” of the Sylow -subgroup of the class group of and prove a result relating its -divisibility to that of the generalized Bernoulli number . This uses the results of Mazur and Wiles in Iwasawa theory over . The more difficult case, in which divides the order of is our chief concern. In this case the result is new and confirms an earlier conjecture of G....
The study of class number invariants of absolute abelian fields, the investigation of congruences for special values of L-functions, Fourier coefficients of half-integral weight modular forms, Rubin's congruences involving the special values of L-functions of elliptic curves with complex multiplication, and many other problems require congruence properties of the generalized Bernoulli numbers (see [16]-[18], [12], [29], [3], etc.). The first steps in this direction can be found in the papers of...
We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product for distinct positive integers , and . In particular, we show that, under some natural conditions on rational functions , the number of distinct zeros and poles of the shifted products and grows linearly with if . We also obtain a version of this result for rational functions over a finite field.