A Recursive Description of the Maximal Pro-2 Galois Group Via Witt Rings.
Let be a prime number, the field of -adic numbers and the completion of the algebraic closure of . In this paper we obtain a representation theorem for rigid analytic functions on which are equivariant with respect to the Galois group , where is a lipschitzian element of and denotes the -neighborhood of the -orbit of .
Let be a finite extension of discrete valuation rings of characteristic , and suppose that the corresponding extension of fields of fractions is separable and is -Galois for some -Hopf algebra . Let be the different of . We show that if is totally ramified and its degree is a power of , then any element of with generates as an -module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.
We prove a local analogue of a theorem of J. Martinet about the absolute norm of the relative discriminant ideal of an extension of number fields. The result can be seen as a statement about -primary units. We also prove a similar statement about the absolute norms of -primary units, for all primes .
We determine when the equidistribution property for possibly moving targets holds for a rational function of degree more than one on the projective line over an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value. This characterization could be useful in the positive characteristic case. Based on a variational argument, we give a purely local proof of the adelic equidistribution theorem for possibly moving targets, which is due to Favre and...