On the deformation of Artin-Schreier to Kummer
The study of class number invariants of absolute abelian fields, the investigation of congruences for special values of L-functions, Fourier coefficients of half-integral weight modular forms, Rubin's congruences involving the special values of L-functions of elliptic curves with complex multiplication, and many other problems require congruence properties of the generalized Bernoulli numbers (see [16]-[18], [12], [29], [3], etc.). The first steps in this direction can be found in the papers of...
We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product for distinct positive integers , and . In particular, we show that, under some natural conditions on rational functions , the number of distinct zeros and poles of the shifted products and grows linearly with if . We also obtain a version of this result for rational functions over a finite field.
Let be a prime. Let such that , let be characters of conductor not divided by and let be the Teichmüller character. For all between and , for all between and , setLet and let be a prime of the valuation ring of . For all let be the Iwasawa series associated to and its reduction modulo . Finally let be an algebraic closure of . Our main result is that if the characters are all distinct modulo , then and the series are linearly independent over a certain...