Displaying 101 – 120 of 275

Showing per page

Galois theory of q -difference equations

Marius van der Put, Marc Reversat (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Choose q with 0 < | q | < 1 . The main theme of this paper is the study of linear q -difference equations over the field K of germs of meromorphic functions at 0 . A systematic treatment of classification and moduli is developed. It turns out that a difference module M over K induces in a functorial way a vector bundle v ( M ) on the Tate curve E q : = * / q that was known for modules with ”integer slopes“, [Saul, 2]). As a corollary one rediscovers Atiyah’s classification ( [ A t ] ) of the indecomposable vector bundles on the complex Tate...

Groupe de Galois différentiel local et représentation adjointe

Elie Compoint, Anne Duval (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article on s’intéresse à la représentation adjointe du tore exponentiel sur l’algèbre de Lie du groupe de Galois différentiel local. Nous proposons un algorithme pour réduire les sous-espaces poids de dimension supérieure à 1 à des sous-espaces de racines. Ce faisant, on construit un tore (en général) maximal qui contient le tore exponentiel. Au cours de ce travail on est amené à étudier la régularité du tore exponentiel dans le groupe de Galois local.

Hodge-Tate and de Rham representations in the imperfect residue field case

Kazuma Morita (2010)

Annales scientifiques de l'École Normale Supérieure

Let K be a p -adic local field with residue field k such that [ k : k p ] = p e < + and V be a p -adic representation of Gal ( K ¯ / K ) . Then, by using the theory of p -adic differential modules, we show that V is a Hodge-Tate (resp. de Rham) representation of Gal ( K ¯ / K ) if and only if V is a Hodge-Tate (resp. de Rham) representation of Gal ( K pf ¯ / K pf ) where K pf / K is a certain p -adic local field with residue field the smallest perfect field k pf containing k .

Indice d’un opérateur différentiel p -adique IV. Cas des systèmes. Mesure de l’irrégularité dans un disque

Philippe Robba (1985)

Annales de l'institut Fourier

Nous désirons savoir si l’opérateur différentiel d’ordre 1 , d d x + G , où G est une k × k matrice à coefficients rationnels, a un indice dans l’espace des fonctions analytiques dans une boule; dans le cas où cet indice existe nous voulons aussi le calculer. Dans le cas où k = 1 nous montrons l’existence d’un indice (si l’exposant de l’opérateur n’est pas Liouville p -adique) et nous montrons comment calculer cet indice. De même nous savons montrer l’existence d’un indice et comment calculer cet indice lorsque le système...

Intégration algorithmique des fonctions élémentairement transcendantes sur une courbe algébrique

J. H. Davenport (1984)

Annales de l'institut Fourier

On considère le problème de déterminer les solutions d’une équation différentielle ordinaire, dite de Risch sur une courbe algébrique. En fait une généralisation assez évidente de la méthode de Risch suffit mais elle nous permet de généraliser son algorithme d’intégration à toute extension élémentairement transcendante d’une extension algébrique des fonctions rationnelles.

Currently displaying 101 – 120 of 275