Displaying 21 – 40 of 181

Showing per page

Categorification of the virtual braid groups

Anne-Laure Thiel (2011)

Annales mathématiques Blaise Pascal

We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.

Cellular covers of cotorsion-free modules

Rüdiger Göbel, José L. Rodríguez, Lutz Strüngmann (2012)

Fundamenta Mathematicae

In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory. Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism π : H o m R ( G , G ) H o m R ( G , H ) , where π⁎(φ) = πφ for each φ H o m R ( G , G ) (where maps are acting on the left). On the one hand,...

CF-modules over commutative rings

Ahmed Najim, Mohammed Elhassani Charkani (2018)

Commentationes Mathematicae Universitatis Carolinae

Let R be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over R is a CF-module. When R is local, we characterize the CF-modules over R whose tensor product is a CF-module.

Champs de vecteurs et formes différentielles sur une variété des points proches

Basile Guy Richard Bossoto, Eugène Okassa (2008)

Archivum Mathematicum

Let M be a smooth manifold, A a local algebra in sense of André Weil, M A the manifold of near points on M of kind A and 𝔛 ( M A ) the module of vector fields on M A . We give a new definition of vector fields on M A and we show that 𝔛 ( M A ) is a Lie algebra over A . We study the cohomology of A -differential forms. Résumé. On considère M une variété différentielle, A une algèbre locale au sens d’André Weil, M A la variété des points proches de M d’espèce A et 𝔛 ( M A ) le module des champs de vecteurs sur M A . On donne une nouvelle...

Characteristic of Rings. Prime Fields

Christoph Schwarzweller, Artur Korniłowicz (2015)

Formalized Mathematics

The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p) are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.

Characterization of irreducible polynomials over a special principal ideal ring

Brahim Boudine (2023)

Mathematica Bohemica

A commutative ring R with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length e is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length 2 . Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length e .

Characterizations of Lambek-Carlitz type

Emil Daniel Schwab (2004)

Archivum Mathematicum

We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The q -analog of the Lambek-Carlitz type characterization of exponential series is also established.

Currently displaying 21 – 40 of 181