Displaying 21 – 40 of 252

Showing per page

The Artin conjecture for Q-algebras.

Ronan Quarez (1997)

Revista Matemática de la Universidad Complutense de Madrid

We give a simplification, in the case of Q-algebras, of the proof of Artin's Conjecture, which says that a regular morphism between Noetherian rings is the inductive limit of smooth morphisms of finite type.

The Boolean space of higher level orderings

Katarzyna Osiak (2007)

Fundamenta Mathematicae

Let K be an ordered field. The set X(K) of its orderings can be topologized to make it a Boolean space. Moreover, it has been shown by Craven that for any Boolean space Y there exists a field K such that X(K) is homeomorphic to Y. Becker's higher level ordering is a generalization of the usual concept of ordering. In a similar way to the case of ordinary orderings one can define a topology on the space of orderings of fixed exact level. We show that it need not be Boolean. However, our main theorem...

The Bordalo order on a commutative ring

Melvin Henriksen, Frank A. Smith (1999)

Commentationes Mathematicae Universitatis Carolinae

If R is a commutative ring with identity and is defined by letting a b mean a b = a or a = b , then ( R , ) is a partially ordered ring. Necessary and sufficient conditions on R are given for ( R , ) to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings Z n of integers mod n for n 2 . In particular, if R is reduced, then ( R , ) is a lattice iff R is a weak Baer ring, and ( R , ) is a distributive lattice iff R is a Boolean ring, Z 3 , Z 4 , Z 2 [ x ] / x 2 Z 2 [ x ] , or a four element field.

The catenary degree of Krull monoids I

Alfred Geroldinger, David J. Grynkiewicz, Wolfgang A. Schmid (2011)

Journal de Théorie des Nombres de Bordeaux

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree c ( H ) of H is the smallest integer N with the following property: for each a H and each two factorizations z , z of a , there exist factorizations z = z 0 , ... , z k = z of a such that, for each i [ 1 , k ] , z i arises from z i - 1 by replacing at most N atoms from z i - 1 by at most N new atoms. Under a very mild condition...

The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh Bandari, Ali Soleyman Jahan (2017)

Czechoslovak Mathematical Journal

Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only if S / I Δ ( 2 ) ( S / I Δ 2 ,...

The cohomology ring of polygon spaces

Jean-Claude Hausmann, Allen Knutson (1998)

Annales de l'institut Fourier

We compute the integer cohomology rings of the “polygon spaces”introduced in [F. Kirwan, Cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906] and [M. Kapovich & J. Millson, the symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, 44 (1996), 479-513]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from the theory...

The combinatorics of quiver representations

Harm Derksen, Jerzy Weyman (2011)

Annales de l’institut Fourier

We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically...

Currently displaying 21 – 40 of 252