Displaying 21 – 40 of 254

Showing per page

The Artin conjecture for Q-algebras.

Ronan Quarez (1997)

Revista Matemática de la Universidad Complutense de Madrid

We give a simplification, in the case of Q-algebras, of the proof of Artin's Conjecture, which says that a regular morphism between Noetherian rings is the inductive limit of smooth morphisms of finite type.

The Bogomolov multiplier of groups of order p 7 and exponent p

Zeinab Araghi Rostami, Mohsen Parvizi, Peyman Niroomand (2024)

Czechoslovak Mathematical Journal

We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order p 7 ( p > 2 ) and exponent p . We present a comprehensive...

The Boolean space of higher level orderings

Katarzyna Osiak (2007)

Fundamenta Mathematicae

Let K be an ordered field. The set X(K) of its orderings can be topologized to make it a Boolean space. Moreover, it has been shown by Craven that for any Boolean space Y there exists a field K such that X(K) is homeomorphic to Y. Becker's higher level ordering is a generalization of the usual concept of ordering. In a similar way to the case of ordinary orderings one can define a topology on the space of orderings of fixed exact level. We show that it need not be Boolean. However, our main theorem...

The Bordalo order on a commutative ring

Melvin Henriksen, Frank A. Smith (1999)

Commentationes Mathematicae Universitatis Carolinae

If R is a commutative ring with identity and is defined by letting a b mean a b = a or a = b , then ( R , ) is a partially ordered ring. Necessary and sufficient conditions on R are given for ( R , ) to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings Z n of integers mod n for n 2 . In particular, if R is reduced, then ( R , ) is a lattice iff R is a weak Baer ring, and ( R , ) is a distributive lattice iff R is a Boolean ring, Z 3 , Z 4 , Z 2 [ x ] / x 2 Z 2 [ x ] , or a four element field.

The catenary degree of Krull monoids I

Alfred Geroldinger, David J. Grynkiewicz, Wolfgang A. Schmid (2011)

Journal de Théorie des Nombres de Bordeaux

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree c ( H ) of H is the smallest integer N with the following property: for each a H and each two factorizations z , z of a , there exist factorizations z = z 0 , ... , z k = z of a such that, for each i [ 1 , k ] , z i arises from z i - 1 by replacing at most N atoms from z i - 1 by at most N new atoms. Under a very mild condition...

The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh Bandari, Ali Soleyman Jahan (2017)

Czechoslovak Mathematical Journal

Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only if S / I Δ ( 2 ) ( S / I Δ 2 ,...

The cohomology ring of polygon spaces

Jean-Claude Hausmann, Allen Knutson (1998)

Annales de l'institut Fourier

We compute the integer cohomology rings of the “polygon spaces”introduced in [F. Kirwan, Cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906] and [M. Kapovich & J. Millson, the symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, 44 (1996), 479-513]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from the theory...

Currently displaying 21 – 40 of 254