The Apery algorithm for a plane singularity with two branches.
We give a simplification, in the case of Q-algebras, of the proof of Artin's Conjecture, which says that a regular morphism between Noetherian rings is the inductive limit of smooth morphisms of finite type.
Let K be an ordered field. The set X(K) of its orderings can be topologized to make it a Boolean space. Moreover, it has been shown by Craven that for any Boolean space Y there exists a field K such that X(K) is homeomorphic to Y. Becker's higher level ordering is a generalization of the usual concept of ordering. In a similar way to the case of ordinary orderings one can define a topology on the space of orderings of fixed exact level. We show that it need not be Boolean. However, our main theorem...
If is a commutative ring with identity and is defined by letting mean or , then is a partially ordered ring. Necessary and sufficient conditions on are given for to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings of integers mod for . In particular, if is reduced, then is a lattice iff is a weak Baer ring, and is a distributive lattice iff is a Boolean ring, , , or a four element field.
Let be a Krull monoid with finite class group such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree of is the smallest integer with the following property: for each and each two factorizations of , there exist factorizations of such that, for each , arises from by replacing at most atoms from by at most new atoms. Under a very mild condition...
Let be a pure simplicial complex on the vertex set and its Stanley-Reisner ideal in the polynomial ring . We show that is a matroid (complete intersection) if and only if () is clean for all and this is equivalent to saying that (, respectively) is Cohen-Macaulay for all . By this result, we show that there exists a monomial ideal with (pretty) cleanness property while or is not (pretty) clean for all integer . If , we also prove that () is clean if and only if (,...
We compute the integer cohomology rings of the “polygon spaces”introduced in [F. Kirwan, Cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906] and [M. Kapovich & J. Millson, the symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, 44 (1996), 479-513]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from the theory...
We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically...