Integral points and the hyperbolicity of the complement of hypersurfaces.
Let be two regular functions from the smooth affine complex variety to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system with respect to . We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.
We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.
Nous généralisons la théorie de l’intégration motivique au cadre des schémas formels. Nous définissons et étudions l’anneau booléen des ensembles mesurables, la mesure motivique, l’intégrale motivique et nous démontrons un théorème de changement de variables pour cette intégrale.
Using the Berline-Vergne integration formula for equivariant cohomology for torus actions, we prove that integrals over Grassmannians (classical, Lagrangian or orthogonal ones) of characteristic classes of the tautological bundle can be expressed as iterated residues at infinity of some holomorphic functions of several variables. The results obtained for these cases can be expressed as special cases of one formula involving the Weyl group action on the characters of the natural representation of...