Previous Page 10

Displaying 181 – 184 of 184

Showing per page

Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces

Shin-ichi Matsumura (2013)

Annales de l’institut Fourier

In this paper, we study relations between positivity of the curvature and the asymptotic behavior of the higher cohomology group for tensor powers of a holomorphic line bundle. The Andreotti-Grauert vanishing theorem asserts that partial positivity of the curvature implies asymptotic vanishing of certain higher cohomology groups. We investigate the converse implication of this theorem under various situations. For example, we consider the case where a line bundle is semi-ample or big. Moreover,...

Asymptotic invariants of base loci

Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa (2006)

Annales de l’institut Fourier

The purpose of this paper is to define and study systematically some asymptotic invariants associated to base loci of line bundles on smooth projective varieties. The functional behavior of these invariants is related to the set-theoretic behavior of base loci.

Currently displaying 181 – 184 of 184

Previous Page 10