Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Local and global theory of the moduli of polarized Calabi-Yau manifolds.

Andrey Todorov (2003)

Revista Matemática Iberoamericana

In this paper we review the moduli theory of polarized CY manifolds. We briefly sketched Kodaira-Spencer-Kuranishi local deformation theory developed by the author and G. Tian. We also construct the Teichmüller space of polarized CY manifolds following the ideas of I. R. Shafarevich and I. I. Piatetski-Shapiro. We review the fundamental result of E. Viehweg about the existence of the course moduli space of polarized CY manifolds as a quasi-projective variety. Recently S. Donaldson computed the moment...

Local-global principle for certain biquadratic normic bundles

Yang Cao, Yongqi Liang (2014)

Acta Arithmetica

Let X be a proper smooth variety having an affine open subset defined by the normic equation N k ( a , b ) / k ( x ) = Q ( t , . . . , t ) ² over a number field k. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of X; (2) the analogue for rational points is also valid assuming Schinzel’s hypothesis.

Currently displaying 21 – 31 of 31

Previous Page 2