Secondary characteristic classes and intermediate Jacobians.
La conjecture de “dualité étrange” de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif . Si on considère deux classes orthogonales dans l’algèbre de Grothendieck telles que est de rang strictement positif et est de rang zéro, on note et les espaces de modules de faisceaux semi-stables de classe , respectivement , sur . Il existe sur (resp. ) un fibré déterminant...
Let be a smooth projective curve of genus defined over an algebraically closed field of characteristic . Given a semistable vector bundle over , we show that its direct image under the Frobenius map of is again semistable. We deduce a numerical characterization of the stable rank- vector bundles , where is a line bundle over .
Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4), 259–274] (which...
We show that for a generic polynomial and an arbitrary differential 1-form with polynomial coefficients of degree , the number of ovals of the foliation , which yield the zero value of the complete Abelian integral , grows at most as as , where depends only on . The main result of the paper is derived from the following more general theorem on bounds for isolated zeros occurring in polynomial envelopes of linear differential equations. Let , , be a fundamental system of real solutions...
We define open book structures with singular bindings. Starting with an extension of Milnor’s results on local fibrations for germs with nonisolated singularity, we find classes of genuine real analytic mappings which yield such open book structures.
In the present paper, we give a first general construction of compactified moduli spaces for semistable -bundles on an irreducible complex projective curve with exactly one node, where is a semisimple linear algebraic group over the complex numbers.