Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Ramification and moduli spaces of finite flat models

Naoki Imai (2011)

Annales de l’institut Fourier

We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.

Ramification dans le corps des modules

Stéphane Flon (2004)

Annales de l’institut Fourier

Soit f un revêtement de la droite projective défini sur ¯ , de groupe de monodromie G . Soit K le compositum des corps de rationalité des points de branchement f , et M le corps des modules correspondants. Partant du lien entre corps des modules et espaces de Hurwitz, on étudie la géométrie et l’arithmétique de ces espaces et des espaces de configuration de points complétés pour évaluer la ramification dans M / K des mauvaises places de f qui ne divisent pas l’ordre de G , mais où les points de branchements...

Recent results on quiver sheaves

Andreas Laudin, Alexander Schmitt (2012)

Open Mathematics

In this article, we survey recent work on the construction and geometry of representations of a quiver in the category of coherent sheaves on a projective algebraic manifold. We will also prove new results in the case of the quiver • ← • → •.

Relative ampleness in rigid geometry

Brian Conrad (2006)

Annales de l’institut Fourier

We develop a rigid-analytic theory of relative ampleness for line bundles and record some applications to faithfully flat descent for morphisms and proper geometric objects. The basic definition is fibral, but pointwise arguments from the algebraic and complex-analytic cases do not apply, so we use cohomological properties of formal schemes over completions of local rings on rigid spaces. An analytic notion of quasi-coherence is introduced so that we can recover a proper object from sections of...

Representation Theorem for Stacks

Grzegorz Bancerek (2011)

Formalized Mathematics

In the paper the concept of stacks is formalized. As the main result the Theorem of Representation for Stacks is given. Formalization is done according to [13].

Représentations linéaires des groupes kählériens et de leurs analogues projectifs

Fréderic Campana, Benoît Claudon, Philippe Eyssidieux (2014)

Journal de l’École polytechnique — Mathématiques

Dans cette note nous établissons le résultat suivant, annoncé dans [CCE13] : si G GL n ( ) est l’image d’une représentation linéaire d’un groupe kählérien π 1 ( X ) , il admet un sous-groupe d’indice fini qui est l’image d’une représentation linéaire du groupe fondamental d’une variété projective complexe lisse X ' .Il s’agit donc de la solution (à indice fini près) pour les représentations linéaires d’une question usuelle demandant si le groupe fondamental d’une variété kählérienne compacte est aussi celui d’une variété...

Currently displaying 1 – 20 of 30

Page 1 Next