La caractéristiqe d'Euler du complexe de Gauss-Manin.
In this lecture we introduce the reader to the proof of the p-adic monodromy theorem linking the p-adic differential equations theory and the local Galois p-adic representations theory.
We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface of Picard number one we find the following: The Kummer variety is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if is a perfect square. And this is the case if and only if carries a divisor with vanishing Beauville-Bogomolov square.
Let be a compact hyperkähler manifold containing a complex torus as a Lagrangian subvariety. Beauville posed the question whether admits a Lagrangian fibration with fibre . We show that this is indeed the case if is not projective. If is projective we find an almost holomorphic Lagrangian fibration with fibre under additional assumptions on the pair , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian...
Le “principe de fonctorialité”, conjecturé par Langlands à la fin des années 60, est un moyen remarquablement synthétique d’unifier et exprimer certains liens profonds entre formes automorphes, arithmétique et géométrie algébrique. Son apparente simplicité contraste fortement avec la difficulté des techniques utilisées pour l’aborder. Parmi celles-ci, la stabilisation de la formule des traces d’Arthur–Selberg bute depuis 25 ans sur une conjecture d’analyse harmonique sur des groupes -adiques :...
La condition “ constant” est une condition numérique d’équisingularité introduite par B. Teissier. Celui-ci a démontré dans (Astérisque, 7 & 8 (1973) II. Théorème 3.9) que cette condition implique les conditions de Whitney, nous montrons ici la réciproque.
To every morphism of differential graded Lie algebras we associate a functors of artin rings whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of . Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.