Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Faisceaux cohérents sur les courbes multiples.

Jean-Marc Drézet (2006)

Collectanea Mathematica

This paper is devoted to the study of coherent sheaves on non reduced curves that can be locally embedded in smooth surfaces. If Y is such a curve then there is a filtration C ⊂ C2 ⊂ ... ⊂ Cn = Y such that C is the reduced curve associated to Y, and for very P ∈ C there exists z ∈ OY,P such that (zi) is the ideal of Ci in OY,P. We define, using canonical filtrations, new invariants of coherent sheaves on Y: the generalized rank and degree, and use them to state a Riemann-Roch theorem for sheaves...

Families of linear differential equations related to the second Painlevé equation

Marius van der Put (2011)

Banach Center Publications

This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules (0,-,3/2) and (-,-,3), related to PII, are interpreted as fine moduli spaces. It is shown that these moduli spaces coincide with the Okamoto-Painlevé spaces for the given parameters. The geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form and in the Flaschka-Newell form. The Bäcklund transformations, the rational solutions and the Riccati solutions for PII are derived...

Familles de Hurwitz et cohomologie non abélienne

Pierre Dèbes, Jean-Claude Douai, Michel Emsalem (2000)

Annales de l'institut Fourier

Nous nous intéressons à la question de l’existence de familles de Hurwitz au-dessus d’un espace de modules de revêtements de la droite. On sait que de telles familles existent dans le cas où les revêtements n’ont pas d’automorphismes. Dans le cas général, il y a une obstruction cohomologique, de nature non-abélienne. Nous donnons une double description de cette obstruction : la première en termes de gerbe, l’outil le mieux adapté à des situations cohomologiques non-abéliennes et la deuxièmes en...

Fibrations of compact Kähler manifolds in terms of cohomological properties of their fundamental groups

Ngaiming Mok (2000)

Annales de l'institut Fourier

We prove fibration theorems on compact Kähler manifolds with conditions on first cohomology groups of fundamental groups with respect to unitary representations into Hilbert spaces. If the fundamental group T of compact Kähler manifold X violates Property (T) of Kazhdan’s, then H 1 ( G a m m a , Φ ) 0 for some unitary representation Φ . By our earlier work there exists a d -closed holomorphic 1-form with coefficients twisted by some unitary representation Φ ' , possibly non-isomorphic to Φ . Taking norms we obtains a positive...

Fibre de Milnor motivique à l’infini et composition avec un polynôme non dégénéré

Michel Raibaut (2012)

Annales de l’institut Fourier

Soit k un corps de caractéristique nulle, P un polynôme de Laurent en d variables, à coefficients dans k et non dégénéré pour son polyèdre de Newton à l’infini. Soit d fonctions non constantes f l à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée P ( f ) en termes du polyèdre de Newton à l’infini de P . Pour P égal à la somme x 1 + x 2 nous obtenons une formule...

Currently displaying 1 – 20 of 29

Page 1 Next