Factoring polynomials in finite fields: an application of Lang-Weil to a problem in graph theory.
This paper is devoted to the study of coherent sheaves on non reduced curves that can be locally embedded in smooth surfaces. If Y is such a curve then there is a filtration C ⊂ C2 ⊂ ... ⊂ Cn = Y such that C is the reduced curve associated to Y, and for very P ∈ C there exists z ∈ OY,P such that (zi) is the ideal of Ci in OY,P. We define, using canonical filtrations, new invariants of coherent sheaves on Y: the generalized rank and degree, and use them to state a Riemann-Roch theorem for sheaves...
This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules (0,-,3/2) and (-,-,3), related to PII, are interpreted as fine moduli spaces. It is shown that these moduli spaces coincide with the Okamoto-Painlevé spaces for the given parameters. The geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form and in the Flaschka-Newell form. The Bäcklund transformations, the rational solutions and the Riccati solutions for PII are derived...
Nous nous intéressons à la question de l’existence de familles de Hurwitz au-dessus d’un espace de modules de revêtements de la droite. On sait que de telles familles existent dans le cas où les revêtements n’ont pas d’automorphismes. Dans le cas général, il y a une obstruction cohomologique, de nature non-abélienne. Nous donnons une double description de cette obstruction : la première en termes de gerbe, l’outil le mieux adapté à des situations cohomologiques non-abéliennes et la deuxièmes en...
We prove fibration theorems on compact Kähler manifolds with conditions on first cohomology groups of fundamental groups with respect to unitary representations into Hilbert spaces. If the fundamental group T of compact Kähler manifold X violates Property (T) of Kazhdan’s, then for some unitary representation . By our earlier work there exists a -closed holomorphic 1-form with coefficients twisted by some unitary representation , possibly non-isomorphic to . Taking norms we obtains a positive...
Soit un corps de caractéristique nulle, un polynôme de Laurent en variables, à coefficients dans et non dégénéré pour son polyèdre de Newton à l’infini. Soit fonctions non constantes à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée en termes du polyèdre de Newton à l’infini de . Pour égal à la somme nous obtenons une formule...