On Barth's restriction theorem.
Let E be an indecomposable rank two vector bundle on the projective space ℙn, n ≥ 3, over an algebraically closed field of characteristic zero. It is well known that E is arithmetically Buchsbaum if and only if n = 3 and E is a null-correlation bundle. In the present paper we establish an analogous result for rank two indecomposable arithmetically Buchsbaum vector bundles on the smooth quadric hypersurface Q n ⊂ ℙn+1, n ≥ 3. We give in fact a full classification and prove that n must be at most...
In this paper we obtain bounds on h0(E) where E is a semistable bundle of rank 3 over a smooth irreducible projective curve X of genus g ≥ 2 defined over an algebraically closed field of characteristic 0. These bounds are expressed in terms of the degrees of stability s1(E), s2(E). We show also that in some cases the bounds are best possible. These results extend recent work of J. Cilleruelo and I. Sols for bundles of rank 2.
The paper contains an expanded version of the talk delivered by the first author during the conference ALANT3 in Będlewo in June 2014. We survey recent results on independence of systems of Galois representations attached to ℓ-adic cohomology of schemes. Some other topics ranging from the Mumford-Tate conjecture and the Geyer-Jarden conjecture to applications of geometric class field theory are also considered. In addition, we have highlighted a variety of open questions which can lead to interesting...
If a smooth projective variety admits a non-degenerate holomorphic map from the complex plane , then for any finite dimensional linear representation of the fundamental group of the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.
We introduce and study the k-jet ampleness and the k-jet spannedness for a vector bundle, E, on a projective manifold. We obtain different characterizations of projective space in terms of such positivity properties for E. We compare the 1-jet ampleness with different notions of very ampleness in the literature.