Page 1 Next

Displaying 1 – 20 of 68

Showing per page

Parity in Bloch’s conductor formula in even dimension

Takeshi Saito (2004)

Journal de Théorie des Nombres de Bordeaux

For a variety over a local field, Bloch proposed a conjectural formula for the alternating sum of Artin conductor of -adic cohomology. We prove that the formula is valid modulo 2 if the variety has even dimension.

Parity sheaves, moment graphs and the p -smooth locus of Schubert varieties

Peter Fiebig, Geordie Williamson (2014)

Annales de l’institut Fourier

We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the p -smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.

Perfect stratifications and theory of weights.

Vicente Navarro Aznar (1992)

Publicacions Matemàtiques

In this paper we emphasize Deligne's theory of weights, in order to prove that some stratifications of algebraic varieties are perfect. In particular, we study in some detail the Bialynicki-Birula's stratifications and the stratifications considered by F. Kirwan to compute the cohomology of symplectic or geometric quotients. Finally we also appoint the motivic formulation of this approach, which contains the Hodge theoretic formulation.

Currently displaying 1 – 20 of 68

Page 1 Next