The Algebraic nature of the elementary theory of PRC fields.
We construct del Pezzo surfaces of degree violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.
We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem...
Let be an algebraic variety defined over a field of characteristic , and let be an -torsor under a torus. We compute the Brauer group of . In the case of a number field we deduce results concerning the arithmetic of .
Let A be an abelian variety with commutative endomorphism algebra over a finite field k. The k-isogeny class of A is uniquely determined by a Weil polynomial f A without multiple roots. We give a classification of the groups of k-rational points on varieties from this class in terms of Newton polygons of f A(1 − t).
Let be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if and both and are odd primes, then the general elliptic curve has only the integral point . By this result we can get that the above elliptic curve has only the trivial integral point for etc. Thus it can be seen that the elliptic curve really is an unusual elliptic curve which has large integral points.
Let be a curve over a field with a rational point . We define a canonical cycle . Suppose that is a number field and that has semi-stable reduction over the integers of with fiber components non-singular. We construct a regular model of and show that the height pairing is well defined where and are correspondences. The paper ends with a brief discussion of heights and -functions in the case that is a modular curve.