Displaying 361 – 380 of 397

Showing per page

Theta height and Faltings height

Fabien Pazuki (2012)

Bulletin de la Société Mathématique de France

Using original ideas from J.-B. Bost and S. David, we provide an explicit comparison between the Theta height and the stable Faltings height of a principally polarized Abelian variety. We also give as an application an explicit upper bound on the number of K -rational points of a curve of genus g 2 under a conjecture of S. Lang and J. Silverman. We complete the study with a comparison between differential lattice structures.

Torsion and Tamagawa numbers

Dino Lorenzini (2011)

Annales de l’institut Fourier

Let K be a number field, and let A / K be an abelian variety. Let c denote the product of the Tamagawa numbers of A / K , and let A ( K ) tors denote the finite torsion subgroup of A ( K ) . The quotient c / | A ( K ) tors | is a factor appearing in the leading term of the L -function of A / K in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over or quadratic extensions K / , and for abelian surfaces A / . The smallest possible ratio...

Torsion des courbes elliptiques sur les corps cubiques

Pierre Parent (2000)

Annales de l'institut Fourier

On donne la liste (à un élément près) des nombres premiers qui sont l’ordre d’un point de torsion d’une courbe elliptique sur un corps de nombres de degré trois.

Torsors under tori and Néron models

Martin Bright (2011)

Journal de Théorie des Nombres de Bordeaux

Let R be a Henselian discrete valuation ring with field of fractions K . If X is a smooth variety over K and G a torus over K , then we consider X -torsors under G . If 𝒳 / R is a model of X then, using a result of Brahm, we show that X -torsors under G extend to 𝒳 -torsors under a Néron model of G if G is split by a tamely ramified extension of K . It follows that the evaluation map associated to such a torsor factors through reduction to the special fibre. In this way we can use the geometry of the special...

Uniformly counting rational points on conics

Efthymios Sofos (2014)

Acta Arithmetica

We provide an asymptotic estimate for the number of rational points of bounded height on a non-singular conic over ℚ. The estimate is uniform in the coefficients of the underlying quadratic form.

Currently displaying 361 – 380 of 397