Fonctions zêta locales d'Igusa à plusieurs variables, intégration dans les fibres, et discriminants
We give new arguments that improve the known upper bounds on the maximal number of rational points of a curve of genus over a finite field , for a number of pairs . Given a pair and an integer , we determine the possible zeta functions of genus- curves over with points, and then deduce properties of the curves from their zeta functions. In many cases we can show that a genus- curve over with points must have a low-degree map to another curve over , and often this is enough to...
Nous généralisons la théorie de l’intégration motivique au cadre des schémas formels. Nous définissons et étudions l’anneau booléen des ensembles mesurables, la mesure motivique, l’intégrale motivique et nous démontrons un théorème de changement de variables pour cette intégrale.