A new characterization of rational surface singularities.
We prove that a certain Brill-Noether locus over a non-hyperelliptic curve C of genus 4, is isomorphic to the Donagi-Izadi cubic threefold in the case when the pencils of the two trigonal line bundles of C coincide.
In this paper we classify the algebraic surfaces on C with KS2=4, pg=3 and canonical map of degree d=3. By our result and the previous one of Horikawa (1979) we obtain the complete determination of surfaces with K2=4 and pg=3.
In 1985 Xiao Gang proved that the bicanonical surface of a complex surface S of general type with p2(S) > 2 is not composed of a pencil. In this note a new proof of this theorem is presented.
We generalize and give an elementary proof of Kelly’s refinement [9] of Shoemaker’s result [11] on the birationality of certain BHK-mirrors. Our approach uses a construction that is equivalent to the Krawitz generalization [10] of the duality in Berglund-Hübsch [2].