On the Adjunction Mapping.
Siano una varietà algebrica proiettiva complessa non singolare tridimensionale, un fibrato lineare ampio su , e un intero. Si prova che, a meno di contrarre un numero finito di -piani di , il fibrato è ampio ad eccezione di alcuni casi esplicitamente descritti. Come applicazione si dimostra l'ampiezza del divisore di ramificazione di un qualunque rivestimento di o della quadrica liscia di .
Here we give an explicit polynomial bound (in term of and not depending on the prime ) for the order of the automorphism group of a minimal surface of general type defined over a field of characteristic .
Here we give an upper polynomial bound (as function of but independent on ) for the order of a -subgroup of with minimal surface of general type defined over the field with . Then we discuss the non existence of similar bounds for the dimension as -vector space of the structural sheaf of the scheme .
Let (S, H) be a polarized K3 surface. We define Brill-Noether filtration on moduli spaces of vector bundles on S. Assume that (c 1(E), H) > 0 for a sheaf E in the moduli space. We give a formula for the expected dimension of the Brill-Noether subschemes. Following the classical theory for curves, we give a notion of Brill-Noether generic K3 surfaces. Studying correspondences between moduli spaces of coherent sheaves of different ranks on S, we prove our main theorem: polarized K3 surface which...