Recherches analytiques sur la surface du troisième ordre qui est la réciproque de la surface de Steiner
We give a lower bound for the Seshadri constants of ample vector bundles which depends only on the numerical properties of the Chern classes and on a “stability” condition.
2000 Mathematics Subject Classification: 14C20, 14E25, 14J26.The famous Nagata Conjecture predicts the lowest degree of a plane curve passing with prescribed multiplicities through given points in general position. We explain how this conjecture extends naturally via multiple point Seshadri constants to ample line bundles on arbitrary surfaces. We show that if there exist curves of unpredictable low degree, then they must have equal multiplicities in all but possibly one of the given points. We...
We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental...
Nous présentons une méthode qui permet de calculer le transformée de Nash (et sa normalisation) d’une singularité de surface pour laquelle on dispose d’une résolution explicite. Comme exemple nous calculons la résolution des points doubles rationnels obtenue par itération du transformé de Nash normalisé.
On considère l’espace de modules des fibrés stables de rang sur , de classes de Chern , étant un corps algébriquement clos de caractéristique quelconque. Si () ou (), on sait ([7], [9]) que a une composante irréductible dont le point générique a la cohomologie naturelle. Nous avons calculé ([16]) la résolution minimale de . Dans cet article, nous voulons déterminer celle de si où est le plus petit entier tel que . Par un procédé standard rappelé dans [16], on se ramène à des...