Displaying 1301 – 1320 of 1685

Showing per page

Stabilizers for nondegenerate matrices of boundary format and Steiner bundles.

Carla Dionisi (2004)

Revista Matemática Complutense

In this paper nondegenerate multidimensional matrices of boundary format in V0 ⊗ ... ⊗ Vp are investigated by their link with Steiner vector bundles on product of projective spaces. For any nondegenerate matrix A the stabilizer for the SL(V0) x ... x SL(Vp)-action, Stab(A), is completely described. In particular we prove that there exists an explicit action of SL(2) on V0 ⊗ ... ⊗ Vp such that Stab(A)0 ⊆ SL(2) and the equality holds if and only if A belongs to a unique SL(V0) x ... x SL(Vp)-orbit...

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and then sum over...

Subsheaves of the cotangent bundle

Paolo Cascini (2006)

Open Mathematics

For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.

Currently displaying 1301 – 1320 of 1685