Displaying 1621 – 1640 of 1685

Showing per page

Very ampleness of multiples of principal polarization on degenerate Abelian surfaces.

Alessandro Arsie (2005)

Revista Matemática Complutense

Quite recently, Alexeev and Nakamura proved that if Y is a stable semi-Abelic variety (SSAV) of dimension g equipped with the ample line bundle OY(1), which deforms to a principally polarized Abelian variety, then OY(n) is very ample as soon as n ≥ 2g + 1, that is n ≥ 5 in the case of surfaces. Here it is proved, via elementary methods of projective geometry, that in the case of surfaces this bound can be improved to n ≥ 3.

Weierstrass Points with First Non-Gap Four on a Double Covering of a Hyperelliptic Curve II

Komeda, Jiryo, Ohbuchi, Akira (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.A 4-semigroup means a numerical semigroup whose minimum positive integer is 4. In [7] we showed that a 4-semigroup with some conditions is the Weierstrass semigroup of a ramification point on a double covering of a hyperelliptic curve. In this paper we prove that the above statement holds for every 4-semigroup.

Welschinger invariants of small non-toric Del Pezzo surfaces

Ilia Itenberg, Viatcheslav Kharlamov, Eugenii Shustin (2013)

Journal of the European Mathematical Society

We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at q real and s 1 pairs of conjugate imaginary points, where q + 2 s 5 , and the real quadric blown up at s 1 pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil’s recursive formula [22] for Gromov–Witten invariants of these surfaces and generalizes our recursive formula [12] for purely real Welschinger invariants of real toric...

Zéro-cycles de degré 1 sur les solides de Poonen

Jean-Louis Colliot-Thélène (2010)

Bulletin de la Société Mathématique de France

B. Poonen a récemment exhibé des exemples de variétés projectives et lisses de dimension 3 sur un corps de nombres qui n’ont pas de point rationnel et pour lesquelles il n’y a pas d’obstruction de Brauer–Manin après revêtement fini étale. Je montre que les variétés qu’il construit possèdent des zéro-cycles de degré 1.

Currently displaying 1621 – 1640 of 1685