Explicit polar decomposition of companion matrices.
We study square matrices which are products of simpler factors with the property that any ordering of the factors yields a matrix cospectral with the given matrix. The results generalize those obtained previously by the authors.
A real matrix is a G-matrix if is nonsingular and there exist nonsingular diagonal matrices and such that , where denotes the transpose of the inverse of . Denote by a diagonal (signature) matrix, each of whose diagonal entries is or . A nonsingular real matrix is called -orthogonal if . Many connections are established between these matrices. In particular, a matrix is a G-matrix if and only if is diagonally (with positive diagonals) equivalent to a column permutation of...
(Homogeneous) Markov bridges are (time homogeneous) Markov chains which begin at a given point and end at a given point. The price to pay for preserving the homogeneity is to work with processes with a random life-span. Bridges are studied both for themselves and for their use in describing the transformations of Markov chains: restriction on a random interval, time reversal, time change, various conditionings comprising the confinement in some part of the state space. These bridges lead us to look...
We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions.