Algorithms for the matrix sector function.
In this paper we show that in an analogous way to the scalar case, the general solution of a non homogeneous second order matrix differential equation may be expressed in terms of the exponential functions of certain matrices related to the corresponding characteristic algebraic matrix equation. We introduce the concept of co-solution of an algebraic equation of the type X^2 + A1.X + A0 = 0, that allows us to obtain a method of the variation of the parameters for the matrix case and further to find...
Cayley-Hamilton theorem is proved by an analytical approach by recalling certain interesting properties of density. In this process, the classical expressions of the principal invariants follow immediately from the proposed proof's scheme.
In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.
In this paper we propose a procedure to construct approximations of the inverse of a class of differentiable mappings. First of all we determine in terms of the data a neighbourhood where the inverse mapping is well defined. Then it is proved that the theoretical inverse can be expressed in terms of the solution of a differential equation depending on parameters. Finally, using one-step matrix methods we construct approximate inverse mappings of a prescribed accuracy.
Necessary and sufficient conditions are established for the existence of a solution to some bilateral polynomial matrix equations with unimodular right-hand-side matrices. A procedure for the computation of the solution is derived and illustrated by a numerical example. Two examples of applications of bilateral polynomial matrix equations are presented.
This article is focused on calculating the trajectory of an industrial robot in the production of composites for the automotive industry. The production technology is based on the winding of carbon fibres on a polyurethane frame. The frame is fastened to the end-effector of the robot arm (i.e. robot-end-effector, REE). The passage of the frame through the fibre processing head is determined by the REE trajectory. The position of the fibre processing head is fixed and is composed of three fibre guide...
2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.For an n×n matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients: (λ0I+C0)+A(λ1I+C1)+… +An-1(λn-1I+Cn-1)+An (n!I+Cn) = 0, where λ0+λ1x+…+λn-1 xn-1+n!xn is the right characteristic polynomial of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci, 0 ≤ i ≤ n are in [R,R]. If R is commutative, then C0 = C1 = … = Cn-1 = Cn = 0 and our...
In this paper we describe some properties of companion matrices and demonstrate some special patterns that arisewhen a Toeplitz or a Hankel matrix is multiplied by a related companion matrix.We present a necessary and sufficient condition, generalizing known results, for a matrix to be the transforming matrix for a similarity between a pair of companion matrices. A special case of our main result shows that a Toeplitz or a Hankel matrix can be extended using associated companion matrices, preserving...
L. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformations A ↦ ˜S−1AS in which S is a nonsingular quaternion matrix and h = a + bi + cj + dk ↦ ˜h := a − bi + cj − dk (a, b, c, d ∈ ℝ). We give an analogous canonical form of a quaternion matrix with respect to consimilarity transformations A ↦^S−1AS in which h ↦ ^h is an arbitrary involutive automorphism of the...