Page 1

Displaying 1 – 12 of 12

Showing per page

Calculation of industrial robot trajectory in frame composite production

Mlýnek, Jaroslav, Martinec, Tomáš, Petrů, Michal (2017)

Programs and Algorithms of Numerical Mathematics

This article is focused on calculating the trajectory of an industrial robot in the production of composites for the automotive industry. The production technology is based on the winding of carbon fibres on a polyurethane frame. The frame is fastened to the end-effector of the robot arm (i.e. robot-end-effector, REE). The passage of the frame through the fibre processing head is determined by the REE trajectory. The position of the fibre processing head is fixed and is composed of three fibre guide...

Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring

Szigeti, Jeno (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.For an n×n matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients: (λ0I+C0)+A(λ1I+C1)+… +An-1(λn-1I+Cn-1)+An (n!I+Cn) = 0, where λ0+λ1x+…+λn-1 xn-1+n!xn is the right characteristic polynomial of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci, 0 ≤ i ≤ n are in [R,R]. If R is commutative, then C0 = C1 = … = Cn-1 = Cn = 0 and our...

Companion matrices and their relations to Toeplitz and Hankel matrices

Yousong Luo, Robin Hill (2015)

Special Matrices

In this paper we describe some properties of companion matrices and demonstrate some special patterns that arisewhen a Toeplitz or a Hankel matrix is multiplied by a related companion matrix.We present a necessary and sufficient condition, generalizing known results, for a matrix to be the transforming matrix for a similarity between a pair of companion matrices. A special case of our main result shows that a Toeplitz or a Hankel matrix can be extended using associated companion matrices, preserving...

Consimilarity and quaternion matrix equations AX −^X B = C, X − A^X B = C

Tatiana Klimchuk, Vladimir V. Sergeichuk (2014)

Special Matrices

L. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformations A ↦ ˜S−1AS in which S is a nonsingular quaternion matrix and h = a + bi + cj + dk ↦ ˜h := a − bi + cj − dk (a, b, c, d ∈ ℝ). We give an analogous canonical form of a quaternion matrix with respect to consimilarity transformations A ↦^S−1AS in which h ↦ ^h is an arbitrary involutive automorphism of the...

Convergence of Rump's method for computing the Moore-Penrose inverse

Yunkun Chen, Xinghua Shi, Yi Min Wei (2016)

Czechoslovak Mathematical Journal

We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the...

Co-solutions of algebraic matrix equations and higher order singular regular boundary value problems

Lucas Jódar, Enrique A. Navarro (1994)

Applications of Mathematics

In this paper we obtain existence conditions and a closed form of the general solution of higher order singular regular boundary value problems. The approach is based on the concept of co-solution of algebraic matrix equations of polynomial type that permits the treatment of the problem without considering an extended first order system as it has been done in the known literature.

Currently displaying 1 – 12 of 12

Page 1