Matrix bounds for the solution of the continuous algebraic Riccati equation.
We extend three inequalities involving the Hadamard product in three ways. First, the results are extended to any partitioned blocks Hermitian matrices. Second, the Hadamard product is replaced by the Khatri-Rao product. Third, the necessary and sufficient conditions under which equalities occur are presented. Thereby, we generalize two inequalities involving the Khatri–Rao product.
In a recent paper the authors proposed a lower bound on , where , , is an eigenvalue of a transition matrix of an ergodic Markov chain. The bound, which involved the group inverse of , was derived from a more general bound, due to Bauer, Deutsch, and Stoer, on the eigenvalues of a stochastic matrix other than its constant row sum. Here we adapt the bound to give a lower bound on the algebraic connectivity of an undirected graph, but principally consider the case of equality in the bound when...