On the matrix norm subordinate to the Hölder norm.
Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.
In this paper we give a short, elementary proof of a known result in tropical mathematics, by which the convexity of the column span of a zero-diagonal real matrix is characterized by being a Kleene star. We give applications to alcoved polytopes, using normal idempotent matrices (which form a subclass of Kleene stars). For a normal matrix we define a norm and show that this is the radius of a hyperplane section of its tropical span.
We present some generalized Jensen type operator inequalities involving sequences of self-adjoint operators. Among other things, we prove that if f : [0;1) → ℝ is a continuous convex function with f(0) ≤ 0, then [...] for all operators Ci such that [...] (i=1 , ... , n) for some scalar M ≥ 0, where [...] and [...]
Let V be the C*-algebra B(H) of bounded linear operators acting on the Hilbert space H, or the Jordan algebra S(H) of self-adjoint operators in B(H). For a fixed sequence (i₁, ..., iₘ) with i₁, ..., iₘ ∈ 1, ..., k, define a product of by . This includes the usual product and the Jordan triple product A*B = ABA as special cases. Denote the numerical range of A ∈ V by W(A) = (Ax,x): x ∈ H, (x,x) = 1. If there is a unitary operator U and a scalar μ satisfying such that ϕ: V → V has the form A...