De la réduction des formes quadratiques quaternaires positives
Given a euclidean vector space V = (V,〈〉) and a linear map η: V ∧ V → V, the anti-commutative algebra (V,η) is called dissident in case η(v ∧ w) ∉ ℝv ⊕ ℝw for each pair of non-proportional vectors (v,w) ∈ . For any dissident algebra (V,η) and any linear form ξ: V ∧ V → ℝ, the vector space ℝ × V, endowed with the multiplication (α,v)(β,w) = (αβ -〈v,w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)), is a quadratic division algebra. Up to isomorphism, each real quadratic division algebra arises in this way. Vector...
The present paper focuses on the dynamics of doubly stochastic quadratic operators (d.s.q.o) on a finite-dimensional simplex. We prove that if a d.s.q.o. has no periodic points then the trajectory of any initial point inside the simplex is convergent. We show that if d.s.q.o. is not a permutation then it has no periodic points on the interior of the two dimensional (2D) simplex. We also show that this property fails in higher dimensions. In addition, the paper also discusses the dynamics classifications...