A class of symmetric biadditive functionals.
Assume that K is an arbitrary field. Let (I, ⪯) be a two-peak poset of finite prinjective type and let KI be the incidence algebra of I. We study sincere posets I and sincere prinjective modules over KI. The complete set of all sincere two-peak posets of finite prinjective type is given in Theorem 3.1. Moreover, for each such poset I, a complete set of representatives of isomorphism classes of sincere indecomposable prinjective modules over KI is presented in Tables 8.1.
Se considera un modelo lineal mixto multivariante equilibrado sin interacción para el que las matrices de las formas cuadráticas necesarias para estimar la covarianza de las componentes se expresan mediante operadores lineales en espacios con producto interior de dimensión finita. El propósito de este artículo es demostrar que las formas cuadráticas obtenidas por el proceso de ortogonalización de Gram-Schmidt de las matrices de diseño son combinaciones lineales de las formas cuadráticas derivadas...
We give a simple direct proof of the polar decomposition for separated linear maps in pseudo-Euclidean geometry.
Compositional data, multivariate observations that hold only relative information, need a special treatment while performing statistical analysis, with respect to the simplex as their sample space ([Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986.], [Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392.], [Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds): Compositional data analysis in the geosciences:...
The concept of supercomplex structure is introduced in the pseudo-Euclidean Hurwitz pairs and its basic algebraic and geometric properties are described, e.g. a necessary and sufficient condition for the existence of such a structure is found.