Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 15-XX Linear and multilinear algebra; matrix theory
  • 15Axx Basic linear algebra
  • 15A72 Vector and tensor algebra, theory of invariants

15Axx Basic linear algebra

  • 15A03 Vector spaces, linear dependence, rank
  • 15A04 Linear transformations, semilinear transformations
  • 15A06 Linear equations
  • 15A09 Matrix inversion, generalized inverses
  • 15A12 Conditioning of matrices
  • 15A15 Determinants, permanents, other special matrix functions
  • 15A16 Matrix exponential and similar functions of matrices
  • 15A18 Eigenvalues, singular values, and eigenvectors
  • 15A21 Canonical forms, reductions, classification
  • 15A22 Matrix pencils
  • 15A23 Factorization of matrices
  • 15A24 Matrix equations and identities
  • 15A27 Commutativity
  • 15A29 Inverse problems
  • 15A30 Algebraic systems of matrices
  • 15A39 Linear inequalities
  • 15A42 Inequalities involving eigenvalues and eigenvectors
  • 15A45 Miscellaneous inequalities involving matrices
  • 15A54 Matrices over function rings in one or more variables
  • 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
  • 15A63 Quadratic and bilinear forms, inner products
  • 15A66 Clifford algebras, spinors
  • 15A69 Multilinear algebra, tensor products
  • 15A72 Vector and tensor algebra, theory of invariants
  • 15A75 Exterior algebra, Grassmann algebras
  • 15A78 Other algebras built from modules
  • 15A80 Max-plus and related algebras
  • 15A83 Matrix completion problems
  • 15A86 Linear preserver problems
  • 15A99 Miscellaneous topics
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 1 of 1

Showing per page

Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist.

Paul Gordan (1868)

Journal für die reine und angewandte Mathematik

Currently displaying 1 – 1 of 1

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7