Page 1

Displaying 1 – 3 of 3

Showing per page

On linear maps leaving invariant the copositive/completely positive cones

Sachindranath Jayaraman, Vatsalkumar N. Mer (2024)

Czechoslovak Mathematical Journal

The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices 𝒮 n that leave invariant the closed convex cones of copositive and completely positive matrices ( COP n and CP n ). A description of an invertible linear map on 𝒮 n such that L ( CP n ) C P n is obtained in terms of semipositive maps over the positive semidefinite cone 𝒮 + n and the cone of symmetric nonnegative matrices 𝒩 + n for n 4 , with specific calculations for n = 2 . Preserver properties of the Lyapunov map X A X + X A t , the...

On linear operators strongly preserving invariants of Boolean matrices

Yizhi Chen, Xian Zhong Zhao (2012)

Czechoslovak Mathematical Journal

Let 𝔹 k be the general Boolean algebra and T a linear operator on M m , n ( 𝔹 k ) . If for any A in M m , n ( 𝔹 k ) ( M n ( 𝔹 k ) , respectively), A is regular (invertible, respectively) if and only if T ( A ) is regular (invertible, respectively), then T is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over 𝔹 k . Meanwhile, noting that a general Boolean algebra 𝔹 k is isomorphic...

Currently displaying 1 – 3 of 3

Page 1