Hankel-matrix approach to invertibility of linear multivariable systems
Commutative Jordan algebras are used to drive an highly tractable framework for balanced factorial designs with a prime number p of levels for their factors. Both fixed effects and random effects models are treated. Sufficient complete statistics are obtained and used to derive UMVUE for the relevant parameters. Confidence regions are obtained and it is shown how to use duality for hypothesis testing.
Consider —the ring of all upper triangular matrices defined over some field . A map is called a zero product preserver on in both directions if for all the condition is satisfied if and only if . In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map may act in any bijective way, whereas for the zero divisors and zero matrix one can write as a composition...
We prove that the principal eigenvector of a positive matrix represents the relative dominance of its rows or ranking of alternatives in a decision represented by the rows of a pairwise comparison matrix.
The multivariate linear model, in which the matrix of the first order parameters is divided into two matrices: to the matrix of the useful parameters and to the matrix of the nuisance parameters, is considered. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters and on the variance components.
Let P,Q be two linear idempotents on a Banach space. We show that the closedness of the range and complementarity of the kernel (range) of linear combinations of P and Q are independent of the choice of coefficients. This generalizes known results and shows that many spectral properties of linear combinations do not depend on their coefficients.
Properties of - compositions of fuzzy relations were first examined in Goguen [8] and next discussed by many authors. Power sequence of fuzzy relations was mainly considered in the case of matrices of fuzzy relation on a finite set. We consider - powers of fuzzy relations under diverse assumptions about operation. At first, we remind fundamental properties of - composition. Then, we introduce some manipulations on relation powers. Next, the closure and interior of fuzzy relations are examined....
Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a subnormal operator...