Displaying 21 – 40 of 75

Showing per page

Determinant Representations of Sequences: A Survey

A. R. Moghaddamfar, S. Navid Salehy, S. Nima Salehy (2014)

Special Matrices

This is a survey of recent results concerning (integer) matrices whose leading principal minors are well-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are different ways for constructing such matrices. Some of these matrices are constructed by homogeneous or nonhomogeneous recurrence relations, and others are constructed by convolution of two sequences. In this article, we will illustrate the idea of these methods by constructing some integer matrices of this...

Determinants and inverses of circulant matrices with complex Fibonacci numbers

Ercan Altınışık, N. Feyza Yalçın, Şerife Büyükköse (2015)

Special Matrices

Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.

Déterminants et intégrales de Fresnel

Yves Colin de Verdière (1999)

Annales de l'institut Fourier

On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...

Determinants of (–1,1)-matrices of the skew-symmetric type: a cocyclic approach

Víctor Álvarez, José Andrés Armario, María Dolores Frau, Félix Gudiel (2015)

Open Mathematics

An n by n skew-symmetric type (-1; 1)-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices), but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1; 1)-matrices...

Diagonal reductions of matrices over exchange ideals

Huanyin Chen (2006)

Czechoslovak Mathematical Journal

In this paper, we introduce related comparability for exchange ideals. Let I be an exchange ideal of a ring R . If I satisfies related comparability, then for any regular matrix A M n ( I ) , there exist left invertible U 1 , U 2 M n ( R ) and right invertible V 1 , V 2 M n ( R ) such that U 1 V 1 A U 2 V 2 = diag ( e 1 , , e n ) for idempotents e 1 , , e n I .

Currently displaying 21 – 40 of 75