Displaying 41 – 60 of 69

Showing per page

Gens de R n

D. Lacaze (1984)

Mathématiques et Sciences Humaines

Geometría de gramianos en el espacio de Hilbert.

Pedro J. Burillo López, Joaquín Aguilella Almer (1981)

Stochastica

The purpose of the Part I of this paper is to develop the geometry of Gram's determinants in Hilbert space. In Parts II and III a generalization is given of the Pythagorean theorem and triangular inequality for finite vector families.

Geometric Structures in Bundlesof Associative Algebras

Igor M. Burlakov (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The article deals with bundles of linear algebra as a specifications of the case of smooth manifold. It allows to introduce on smooth manifold a metric by a natural way. The transfer of geometric structure arising in the linear spaces of associative algebras to a smooth manifold is also presented.

Geometry and inequalities of geometric mean

Trung Hoa Dinh, Sima Ahsani, Tin-Yau Tam (2016)

Czechoslovak Mathematical Journal

We study some geometric properties associated with the t -geometric means A t B : = A 1 / 2 ( A - 1 / 2 B A - 1 / 2 ) t A 1 / 2 of two n × n positive definite matrices A and B . Some geodesical convexity results with respect to the Riemannian structure of the n × n positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding m pairs...

Geometry of Cyclic and Anticylic Algebras

Igor M. Burlakov, Marek Jukl (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The article deals with spaces the geometry of which is defined by cyclic and anticyclic algebras. Arbitrary multiplicative function is taken as a fundamental form. Motions are given as linear transformation preserving given multiplicative function.

G-matrices, J -orthogonal matrices, and their sign patterns

Frank J. Hall, Miroslav Rozložník (2016)

Czechoslovak Mathematical Journal

A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D 1 and D 2 such that A - T = D 1 A D 2 , where A - T denotes the transpose of the inverse of A . Denote by J = diag ( ± 1 ) a diagonal (signature) matrix, each of whose diagonal entries is + 1 or - 1 . A nonsingular real matrix Q is called J -orthogonal if Q T J Q = J . Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation of...

Currently displaying 41 – 60 of 69